68 research outputs found

    NMDA-based pattern discrimination in a modeled cortical neuron

    Get PDF
    Compartmental simulations of an anatomically characterized cortical pyramidal cell were carried out to study the integrative behavior of a complex dendritic tree. Previous theoretical (Feldman and Ballard 1982; Durbin and Rumelhart 1989; Mel 1990; Mel and Koch 1990; Poggio and Girosi 1990) and compartmental modeling (Koch et al. 1983; Shepherd et al. 1985; Koch and Poggio 1987; Rall and Segev 1987; Shepherd and Brayton 1987; Shepherd et al. 1989; Brown et al. 1991) work had suggested that multiplicative interactions among groups of neighboring synapses could greatly enhance the processing power of a neuron relative to a unit with only a single global firing threshold. This issue was investigated here, with a particular focus on the role of voltage-dependent N-methyl-D-asparate (NMDA) channels in the generation of cell responses. First, it was found that when a large proportion of the excitatory synaptic input to dendritic spines is carried by NMDA channels, the pyramidal cell responds preferentially to spatially clustered, rather than random, distributions of activated synapses. Second, based on this mechanism, the NMDA-rich neuron is shown to be capable of solving a nonlinear pattern discrimination task. We propose that manipulation of the spatial ordering of afferent synaptic connections onto the dendritic arbor is a possible biological strategy for pattern information storage during learning

    The Clusteron: Toward a Simple Abstraction for a Complex Neuron

    Get PDF
    Are single neocortical neurons as powerful as multi-layered networks? A recent compartmental modeling study has shown that voltage-dependent membrane nonlinearities present in a complex dendritic tree can provide a virtual layer of local nonlinear processing elements between synaptic inputs and the final output at the cell body, analogous to a hidden layer in a multi-layer network. In this paper, an abstract model neuron is introduced, called a clusteron, which incorporates aspects of the dendritic "cluster-sensitivity" phenomenon seen in these detailed biophysical modeling studies. It is shown, using a clusteron, that a Hebb-type learning rule can be used to extract higher-order statistics from a set of training patterns, by manipulating the spatial ordering of synaptic connections onto the dendritic tree. The potential neurobiological relevance of these higher-order statistics for nonlinear pattern discrimination is then studied within a full compartmental model of a neocortical pyramidal cell, using a training set of 1000 high-dimensional sparse random patterns

    Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites

    Get PDF
    Cortical computations are critically dependent on interactions between pyramidal neurons (PNs) and a menagerie of inhibitory interneuron types. A key feature distinguishing interneuron types is the spatial distribution of their synaptic contacts onto PNs, but the location-dependent effects of inhibition are mostly unknown, especially under conditions involving active dendritic responses. We studied the effect of somatic vs. dendritic inhibition on local spike generation in basal dendrites of layer 5 PNs both in neocortical slices and in simple and detailed compartmental models, with equivalent results: somatic inhibition divisively suppressed the amplitude of dendritic spikes recorded at the soma while minimally affecting dendritic spike thresholds. In contrast, distal dendritic inhibition raised dendritic spike thresholds while minimally affecting their amplitudes. On-the-path dendritic inhibition modulated both the gain and threshold of dendritic spikes depending on its distance from the spike initiation zone. Our findings suggest that cortical circuits could assign different mixtures of gain vs. threshold inhibition to different neural pathways, and thus tailor their local computations, by managing their relative activation of soma- vs. dendrite-targeting interneurons

    Distinguishing Linear vs. Non-Linear Integration in CA1 Radial Oblique Dendrites: It’s about Time

    Get PDF
    It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and supralinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini and Magee, 2006; Losonczy and Magee, 2006). This led to the conjecture that CA1 pyramidal neurons may only express their non-linear integrative capabilities during the highly synchronized sharp waves and ripples that occur during slow wave sleep and resting/consummatory behavior, whereas during active exploration and REM sleep (theta rhythm), inadequate synchronization of excitation would lead CA1 pyramidal cells to function as essentially linear devices. Using a detailed single neuron model, we replicated the experimentally observed synchronization effect for brief inputs mimicking single synaptic release events. When synapses were driven instead by double pulses, more representative of the bursty inputs that occur in vivo, we found that the tolerance for input desynchronization was increased by more than an order of magnitude. The effect depended mainly on paired-pulse facilitation of NMDA receptor-mediated responses at Schaffer collateral synapses. Our results suggest that CA1 pyramidal cells could function as non-linear integrative units in all major hippocampal states

    TABLET: The Personal Computer of the Year 2000

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySRC / 87-DP-109NASA / NAG 1-61

    SEEMORE: A View-Based Approach to 3-D Object Recognition Using Multiple Visual Cues

    No full text
    A neurally-inspired visual object recognition system is described called seemore, whose goal is to identify common objects from a large known set---independent of 3-D viewing angle, distance, and non-rigid distortion. seemore's database consists of 100 objects that are rigid (shovel), non-rigid (telephone cord), articulated (book), statistical (shrubbery), and complex (photographs of scenes). Recognition results were obtained using a set of 102 color and shape feature channels within a simple feedforward network architecture

    NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron

    No full text

    MURPHY: A neurally-inspired connectionist approach to learning and performance in vision-based robot motion planning

    No full text
    Many aspects of intelligent animal behavior require an understanding of the complex spatial relationships between the body and its parts and the coordinate systems of the external world. This thesis deals specifically with the problem of guiding a multi-link arm to a visual target in the presence of obstacles. A simple vision-based kinematic controller and motion planner based on a connectionist network architecture has been developed, called MURPHY. The physical setup consists of a video camera and a Rhino XR-3 robot arm with three joints that move in the image plane of the camera. We assume no a priori model of arm kinematics or of the imaging characteristics of the camera/visual system, and no sophisticated built-in algorithms for obstacle avoidance. Instead, MURPHY builds a model of his arm through a combination of physical and "mental" practice, and then uses simple heuristic search with mental images of his arm to solve visually-guided reaching problems in the presence of obstacles whose traditional algorithmic solutions are extremely complex. MURPHY differs from previous approaches to robot motion-planning primarily in his use of an explicit full-visual-field representation of the workspace. Several other aspects of MURPHY's design are unusual, including the sigma-pi synaptic learning rule, the teacherless training paradigm, and the integration of sequential control within an otherwise connectionist architecture. In concluding sections we outline a series of strong correspondences between the representations and algorithms used by MURPHY, and the psychology, physiology, and neural bases for the programming and control of directed, voluntary arm movements in humans and animals.U of I OnlyETDs are only available to UIUC Users without author permissio
    corecore